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Total synthesis of 6-epiprelactone-V via a syn-selective
oxygen tethered intramolecular Michael reactionI
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Abstract—The intramolecular protective group (benzylidene acetal) assisted syn-1,3-diol synthesis has been efficiently utilized in a
short synthesis of 6-epiprelactone-V starting from (S)-malic acid.
� 2005 Elsevier Ltd. All rights reserved.
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Poly-substituted chiral d-lactones have attracted consid-
erable attention in recent years due to their importance
as building blocks in natural product synthesis1 and due
to the fact that they form part of the structures of poly-
ketide macrolides,2 which have various biological pro-
files. These include bafilomycin A,3 mevinolin and
compactin.4 Similarly, several substituted d-lactones
have been isolated from microorganisms. Prelactones
are examples of such d-lactones isolated from bafilo-
mycin producing microorganisms and other polyketide
macrolide producing organisms.5 The structures of these
compounds have been assigned on the basis of the pro-
posed biosynthesis of macrolides.6 Biologically, these
lactones exhibit properties such as ATpase inhibitor
and antibacterial, antifungal and immunosuppressive
activities.7

Our group has been engaged in the development of prac-
tical synthetic approaches towards the substituted pyran
scaffold in chiral form.8 In this letter, we report a total
synthesis of the non-natural enantiomer of prelactone,
(�)-6-epiprelactone-V 1 (Fig. 1) employing a highly che-
mo-regio- and stereoselective tandem ester reduction,
epoxide formation-reductive epoxide opening reaction
protocol9 and a base catalyzed oxygen tethered intra-
molecular Michael addition10 as key steps. The highlight
of the synthesis is the utilization of the chiral centre in
commercially available (S)-malic acid 4 and creation
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of the syn-1,3-diol functionality through an intramole-
cular Michael addition of a benzyloxy tether.

Our approach to epiprelactone-V is depicted retrosyn-
thetically in Scheme 1. The key to this approach was
the synthesis of 3 and 11 starting from readily available
(S)-malic acid 4.

Commercially available (S)-malic acid 4 was subjected
to esterification11 using BF3ÆOEt2 in methanol to give
OH
CH3

OH
OH

OH

OH O

O

(S)-malic acid 4 3

Scheme 1.

mailto:srivaric@iict.res.in
mailto:srivaric@gmail.com


OH
OH

OH O

O

OH O

O

MeO
OMe

OH O

O

MeO
OMe

CH3

OTs O

O

MeO
OMe

CH3

OH
CH3

OH

OTBS
CH3

OTBS

OH
CH3

OTBS

CH3

OTBS O

OEt
CH3

OH O

OEt

6

(S)-malic acid
4 5

a b

c d

e f

g, h
i

7

3 8 9

10 2

Scheme 2. Regents and conditions: (a) BF3ÆOEt2, MeOH, 0 �C to rt,
98%; (b) LHMDS, CH3I, THF, �78 �C, 5 h, 86%; (c) TsCl, py,
CH2Cl2, rt, 30 h, 90%; (d) LAH, THF, 55 �C, 4 h, 79%; (e) TBDMSCI,
immidazole, CH2Cl2, 0 �C to rt, 6 h, 95% ; (f) PTSA (cat), MeOH,
0 �C, 15–30 min, 75%; (g) IBX, THF, DMSO, rt, 1 h; (h)
Ph3P@CHCO2Et, benzene, rt, 6 h, 87% (two steps); (i) PTSA (cat),
MeOH, rt, 1 h, 92%.
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Scheme 3. Regents and conditions: (a) IBX, THF, DMSO, rt, 1 h; (b)
Ph3P@CHCO2Et, benzene, rt, 6 h, 64% (two steps); (c) PHCHO,
KtOBu, THF, 0 �C, 45 min, 76%; (d) concd H2SO4 (cat), THF, rt, 12 h,
95%.
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dimethyl malate 5 in 98% yield. Diester 5 was treated
with LHMDS and methyl iodide in THF at �78 �C to
yield a-alkylated dimethyl malate 6 in good yield with
high diasteroselectivity (12:1). However, the diastereo-
mers could not be separated by chromatography.
Tosylation of 6 gave a separable mixture of 7 and its
syn-diastereoisomers in 90% yield. Treatment of
the anti-isomer 7 with lithium aluminium hydride
(6 M equiv) in THF afforded the desired diol 3 in 79%
yield (Scheme 2).

1,3-Diol 3 was disilylated using TBDMSCl in dichloro-
methane and selective primary desilylation was achieved
successfully using catalytic PTSA in methanol12 at 0 �C
to give primary alcohol 9 in 75% yield. To install the re-
quisite a,b-unsaturated ester for the subsequent base
catalyzed intramolecular oxygen tethered Michael reac-
tion, the 10 alcohol group in 9 was oxidized13 with IBX
to the corresponding aldehyde, followed by two-carbon
homologation using ethoxycarbonylmethylene triphen-
ylphosphorane in benzene to furnish the (E)-a,b-unsat-
urated ester 10 in excellent yield. Deprotection of the
hydroxy group in 10 was achieved using PTSA in metha-
nol to provide the key synthon 2 in high yield (Scheme 3).

Alternatively, d-hydroxy-a,b-unsaturated ester 2 was
obtained by selective oxidation and Wittig olefination
of 3. Thus, diol 3 was selectively oxidized14 with IBX,
followed by two-carbon homologation with the stable
Wittig ylide ethoxycarbonylmethylene triphenylphos-
phorane to furnish 2 in 64% yield.

The d-hydroxy-a,b-unsaturated ester 2 was subjected to
a base catalyzed intramolecular Michael addition using
1.1 equiv of benzaldehyde in the presence of 0.1 equiv
of potassium tert-butoxide at 0 �C in THF to furnish
benzylidene acetal 11 in good yield. The diastereoselec-
tivity was greater than 95% favouring the more stable
syn-isomer. Finally, hydrolysis of the benzylidene acetal
and cyclization were successfully achieved in one pot15

using catalytic concd H2SO4 in methanol to furnish
the target molecule 1 in 95% yield.16

This letter describes a straightforward entry to tri-sub-
stituted d-lactones in optically pure form. The simplicity
of the approach should facilitate the total synthesis of
complex lactone containing natural products.
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