

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 1213–1215

Tetrahedron Letters

Total synthesis of 6-epiprelactone-V via a syn-selective oxygen tethered intramolecular Michael reaction α

S. Chandrasekhar,* Ch. Rambabu and S. Jaya Prakash

Organic Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 12 September 2005; revised 24 November 2005; accepted 1 December 2005 Available online 20 December 2005

Abstract—The intramolecular protective group (benzylidene acetal) assisted syn-1,3-diol synthesis has been efficiently utilized in a short synthesis of 6-epiprelactone-V starting from (S)-malic acid. 2005 Elsevier Ltd. All rights reserved.

Poly-substituted chiral δ -lactones have attracted considerable attention in recent years due to their importance as building blocks in natural product synthesis $\overline{1}$ and due to the fact that they form part of the structures of polyketide macrolides, $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ which have various biological profiles. These include bafilomycin $A₁³$ $A₁³$ $A₁³$ mevinolin and compactin.^{[4](#page-1-0)} Similarly, several substituted δ -lactones have been isolated from microorganisms. Prelactones are examples of such δ -lactones isolated from bafilomycin producing microorganisms and other polyketide macrolide producing organisms.^{[5](#page-1-0)} The structures of these compounds have been assigned on the basis of the pro-posed biosynthesis of macrolides.^{[6](#page-2-0)} Biologically, these lactones exhibit properties such as ATpase inhibitor and antibacterial, antifungal and immunosuppressive activities.[7](#page-2-0)

Our group has been engaged in the development of practical synthetic approaches towards the substituted pyran scaffold in chiral form.^{[8](#page-2-0)} In this letter, we report a total synthesis of the non-natural enantiomer of prelactone, $(-)$ -6-epiprelactone-V 1 (Fig. 1) employing a highly chemo-regio- and stereoselective tandem ester reduction, epoxide formation-reductive epoxide opening reaction protocol^{[9](#page-2-0)} and a base catalyzed oxygen tethered intra-molecular Michael addition^{[10](#page-2-0)} as key steps. The highlight of the synthesis is the utilization of the chiral centre in commercially available (S)-malic acid 4 and creation

Figure 1.

of the syn-1,3-diol functionality through an intramolecular Michael addition of a benzyloxy tether.

Our approach to epiprelactone-V is depicted retrosynthetically in Scheme 1. The key to this approach was the synthesis of 3 and 11 starting from readily available (S) -malic acid 4.

Commercially available (S)-malic acid 4 was subjected to esterification^{[11](#page-2-0)} using BF_3 OEt₂ in methanol to give

Scheme 1.

Keywords: Keck allylation; Intramolecular oxy-Michael reaction; ()-Centrolobine, 2,6-Disubstituted tetrahydropyran. *^q* IICT Communication No. 050615.

^{*} Corresponding author. Tel.: +91 40 27193434; fax: +91 40 27160512; e-mail addresses: srivaric@iict.res.in; srivaric@gmail.com

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.12.012

Scheme 2. Regents and conditions: (a) $BF_3 \text{·}OEt_2$, MeOH, 0 °C to rt, 98%; (b) LHMDS, CH₃I, THF, -78 °C, 5 h, 86%; (c) TsCl, py, CH₂Cl₂, rt, 30 h, 90%; (d) LAH, THF, 55 °C, 4 h, 79%; (e) TBDMSCI, immidazole, CH_2Cl_2 , 0 °C to rt, 6 h, 95% ; (f) PTSA (cat), MeOH, 0 °C, 15–30 min, 75%; (g) IBX, THF, DMSO, rt, 1 h; (h) $Ph_3P=CHCO_2Et$, benzene, rt, 6 h, 87% (two steps); (i) PTSA (cat), MeOH, rt, 1 h, 92%.

dimethyl malate 5 in 98% yield. Diester 5 was treated with LHMDS and methyl iodide in THF at -78 °C to yield α -alkylated dimethyl malate 6 in good yield with high diasteroselectivity (12:1). However, the diastereomers could not be separated by chromatography. Tosylation of 6 gave a separable mixture of 7 and its syn-diastereoisomers in 90% yield. Treatment of the anti-isomer 7 with lithium aluminium hydride (6 M equiv) in THF afforded the desired diol 3 in 79% yield (Scheme 2).

1,3-Diol 3 was disilylated using TBDMSCl in dichloromethane and selective primary desilylation was achieved successfully using catalytic PTSA in methanol^{[12](#page-2-0)} at 0° C to give primary alcohol 9 in 75% yield. To install the requisite α , β -unsaturated ester for the subsequent base catalyzed intramolecular oxygen tethered Michael reaction, the 1° alcohol group in 9 was oxidized^{[13](#page-2-0)} with IBX to the corresponding aldehyde, followed by two-carbon homologation using ethoxycarbonylmethylene triphenylphosphorane in benzene to furnish the (E) - α , β -unsaturated ester 10 in excellent yield. Deprotection of the hydroxy group in 10 was achieved using PTSA in methanol to provide the key synthon 2 in high yield (Scheme 3).

Alternatively, δ -hydroxy- α , β -unsaturated ester 2 was obtained by selective oxidation and Wittig olefination of 3. Thus, diol 3 was selectively oxidized^{[14](#page-2-0)} with IBX, followed by two-carbon homologation with the stable Wittig ylide ethoxycarbonylmethylene triphenylphosphorane to furnish 2 in 64% yield.

The δ -hydroxy- α , β -unsaturated ester 2 was subjected to a base catalyzed intramolecular Michael addition using

Scheme 3. Regents and conditions: (a) IBX, THF, DMSO, rt, 1 h; (b) $Ph_3P=CHCO_2Et$, benzene, rt, 6 h, 64% (two steps); (c) PHCHO, K'OBu, THF, 0 °C, 45 min, 76%; (d) concd H_2SO_4 (cat), THF, rt, 12 h, 95%.

1.1 equiv of benzaldehyde in the presence of 0.1 equiv of potassium *tert*-butoxide at 0° C in THF to furnish benzylidene acetal 11 in good yield. The diastereoselectivity was greater than 95% favouring the more stable syn-isomer. Finally, hydrolysis of the benzylidene acetal and cyclization were successfully achieved in one pot^{[15](#page-2-0)} using catalytic concd H_2SO_4 in methanol to furnish the target molecule 1 in 95% yield.^{[16](#page-2-0)}

This letter describes a straightforward entry to tri-substituted δ -lactones in optically pure form. The simplicity of the approach should facilitate the total synthesis of complex lactone containing natural products.

Acknowledgements

Two of us (C.R. and S.J.P.) thank CSIR, New Delhi, for research fellowships.

References and notes

- 1. (a) Hanessian, S. Total Synthesis of Natural Products: The Chiron Approach; Pergamon Press: Oxford, 1983; (b) Scott, J. W. In Asymmetric Synthesis; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York, 1984; Vol. 4, pp 1–226; (c) Mori, K. Tetrahedron 1989, 45, 3233– 3298; (d) Kotsuki, H.; Miyazaki, A.; Ochi, M. Tetrahedron Lett. 1991, 32, 4503–4504; (e) Koch, S. S. C.; Chamberli, A. R. J. Org. Chem. 1993, 58, 2725–2737; (f) Buisson, D.; Azerad, R. Tetrahedron: Asymmetry 1996, 7, 9-12; (g) Pearson, W. H.; Hemre, E. J. J. Org. Chem. 1996, 61, 7217–7221; (h) Warmerdam, E.; Tranoy, I.; Renoux, B.; Gesson, J. P. Tetrahedron Lett. 1998, 39, 8077–8080.
- 2. O'Hagen, D. In The Polyketide Metabolites; O'Hagen, D., Ed.; Ellis Harwood: New York, 1991; pp 116–137.
- 3. Toshima, K.; Yamaguchi, H.; Jyojima, T.; Noguchi, Y.; Nakata, M.; Matsumura, M. Tetrahedron Lett. 1996, 37, 1073–1076, and references cited therein.
- 4. (a) Reddy, P. P.; Yen, K.-F.; Uang, B.-J. J. Org. Chem. 2002, 67, 1034–1035; (b) Ghosh, A. K.; Lei, H. J. Org. Chem. 2002, 67, 8783–8788.
- 5. (a) Cortes, J.; Wiesman, K. E. H.; Roberts, G. A.; Brown, M. J. B.; Staunton, J.; Leadlay, P. F. Science 1995, 268, 1487–1489; (b) Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. 1994, 116, 11612–11613; (c) Gerlitz, M.; Hammann, P.; Thiericker, R.; Rohr, J. J. Org. Chem. 1992, 57, 4030–4033.
- 6. Khosla, C.; Gokhale, R. S.; Jacobsen, J. R.; Cane, D. E. Ann. Rev. Biochem. 1999, 68, 219–253, and references cited therein.
- 7. (a) Omura, S. In Macrolide Antibiotics: Chemistry, Biology and Practice; Omura, S., Ed.; Academic Press Inc: Orlando, 1984; pp 510–550; (b) Endo, J. A. J. Med. Chem. 1985, 28, 401–405; (c) Honda, T. J. Chem. Soc., Perkin Trans. 1 1990, 1733-1737; (d) Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett. 1966, 18, 1969–1973; (e) Cavil, G. W. K.; Clark, D. V.; Whiteeld, F. B. Aust. J. Chem. 1968, 21, 2819–2823; (f) Laurence, B. R. J. Chem. Soc., Chem. Commun. 1982, 59.
- 8. (a) Yadav, J. S.; Prakash, S. J.; Gangadhar, Y. Tetrahedron: Asymmetry 2005, 16, 2722-2728; (b) Chandrasekhar, S.; Prakash, S. J.; Shyamsunder, T. Tetrahedron Lett. 2005, 46, 6651-6653.
- 9. Huang, P.-Q.; Lan, H.-Q.; Zheng, X.; Ruan, Y.-P. J. Org. Chem. 2004, 69, 3964–3967.
- 10. Evans, D. A.; Gauchet-Prunet, J. A. J. Org. Chem. 1993, 58, 2446–2453.
- 11. (a) Meyers, A. I.; Lawson, J. P.; Walker, D. G.; Linderman, R. J. J. Org. Chem. 1986, 51, 5111–5123; (b) Forster,

R. C.; Owen, L. N. J. Chem. Soc., Perkin Trans. 1 1978, 822; (c) Rapoport, H.; Plattner, J. J. J. Am. Chem. Soc. 1971, 93, 1758–1761.

- 12. Crouch, R. D. Tetrahedron 2004, 60, 5833–5871, and references cited therein.
- 13. Hartman, C.; Meyer, V. Chem. Ber. 1893, 26, 1727.
- 14. Yadav, J. S.; Reddy, B. K.; Sabitha, G. Tetrahedron Lett. 2004, 45, 6475–6476.
- 15. (a) Garaas, S. D.; Hunter, T. J.; O'Doherty, G. A. J. Org. Chem. 2002, 67, 2682–2685; (b) Kumar, P.; Naidu, S. V.; Gupta, P. J. Org. Chem. 2005, 70, 2843-2846.
- 16. Spectral data for compound 1: $[\alpha]_D^{25}$ -81.8 (c 1.3, CHCl₃); ¹H NMR (200 MHz, CDCl₃); δ 4.94-4.85 (m, 1H), 4.05 (q, $J = 3.8$ Hz, 1H), 2.80 (dd, $J = 5.4$, 18.6 Hz, 1H), 2.54 (dd, $J = 3.3, 18.6$ Hz, 1H), 2.41–2.18 (m, 1H), 1.96–1.85 $(m, 1H)$, 1.32 (d, $J = 6.7$ Hz, 3H), 0.96 (d, $J = 7.2$ Hz, $3H$); ¹³C NMR (50 MHz, CDCl₃): δ 171.5, 75.4, 68.2, 37.8, 35.9, 18.0, 10.6; IR (KBr) cm⁻¹ 3425, 2924, 1718, 1250, 1078; MS (LC): m/z 145.1 (M+H)⁺, 167.0 $(M+Na)^{+}$, 127 $(M-17)^{+}$; HRMS: Calcd for $C_7H_{13}O_3$ $(M+H)^{+}$: 145.0864. Found: 145.0862.